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Abstract. Using field-theoretic methods, we calculate the internal energy for the One-Component Plasma
(OCP). We go beyond the recent calculation by Brilliantov [N. Brilliantov, Contrib. Plasma Phys. 38,
489 (1998)] by including non-Gaussian terms. We show that, for the whole range of the plasma parameter
Γ , the effect of the higher-order terms is small and that the final result is not improved relative to the
Gaussian theory when compared to simulations.

PACS. 52.25.Kn Thermodynamics of plasmas – 61.20.Gy Theory and models of liquid structure –
05.20.-y Classical statistical mechanics

1 Introduction

In its simplest form, the One-Component Plasma (OCP)
consists of a collection of n equally charged point-particles
immersed in a neutralizing background that assures global
charge neutrality of the system. The OCP is important
in several areas of physics as a starting point from where
concepts or more refined theories are derived. For instance,
in astrophysics both OCP and its quantum-mechanical
counterpart (the electron gas or “jellium”) are used in
the description of degenerate stellar matter (interior of
white dwarfs and outer layer of neutron stars) and the
interior of massive planets like Jupiter [1]. In condensed
matter physics, jellium is often used as a reference state
when calculating the electronic structure of solids. When
generalized to a Two-Component Plasma (or Primitive
Model, if hard-core interactions are taken into account),
it can describe electrolytes and electrostatically stabilized
colloidal solutions. For reviews see [1,2].

Different analytical techniques were employed in order
to understand the OCP. These were, in most cases, based
on integral equations (as for instance in [3–5]) or modified
Mayer expansions [6,7], i.e., low density expansions that
used infinite resummation of diagrams that accounted for
the long range character of the Coulomb interaction. Com-
parison of the theoretical results with experimental data is
usually not possible. It is here where simulations (or “com-
puter experiments” [2]) play a particularly important role,
by providing a test ground where the suitability and range
of validity of the different approaches can be checked. In
general, the simulations use Monte Carlo technique [8–11]
and yield quantities like the internal energy or the pair
distribution function g(r).

In a recent paper [12], a field-theoretic approach was
used to treat the OCP. The introduction of a cut-off
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at small wavelength (large-k) related to the mean dis-
tance between particles led to a good agreement, for all
values of the plasma parameter Γ , between the calcu-
lated internal energy and simulation results. The field-
theoretic action used in [12] neglects terms other than the
Gaussian ones, i.e., it goes up to second order in the fluc-
tuating field. Here we extend this by including more terms
in the action and calculating consistently, using the same
cut-off, their contribution to the internal energy. As our
main result, we show that the higher order terms do not
affect significantly the results obtained with the Gaussian
theory derived in [12].

2 The field-theoretic model

Let us assume a classical system where n positively
charged particles are immersed in a neutralizing nega-
tively charged background. The partition function of this
system is

Z =
1
n!

[ n∏
j=1

∫
drj
λ3

]
exp
{
Eself

− 1
2

∫
drdr′ρ̂c(r)v(r − r′)ρ̂c(r′)

}
(1)

where λ is an arbitrary constant, v(r) = `B/r is the bare
Coulomb operator and `B ≡ e2/4πεkBT is the Bjerrum
length (the length at which two elementary charges have
an interaction energy equal to the thermal energy). The
charge density ρ̂c(r) is defined as

ρ̂c(r) = −ρ− + q
n∑
j=1

δ(r− rj), (2)
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where q is the valency of the particles and ρ− is the
uniform density of the neutralizing background. Global
charge neutrality implies that ρ− = qn/V , where V is the
volume of the system. The Coulomb self-interaction of the
particles is given by

Eself =
q2n

2
v(0) =

q2n

2

∫
dk

(2π)3

4π`B
k2
· (3)

This corresponds to an infinite shift in the chemical poten-
tial, which is unimportant for the thermodynamics of the
system. We keep this term for reasons that will become
clear later (cf. Eq. (10) below).

We can apply the Hubbard-Stratonovich transforma-
tion and obtain a partition function that depends on a
fluctuating field φ. This follows closely what has been done
in [13], and so we state here the final expression

Zex ≡ Ze−S =
∫
Dφ

Z0
exp
{
Eself

− 1
2

∫
drdr′φ(r)v−1

DH(r− r′)φ(r′) +W [φ]
}
, (4)

where S = −n ln(cλ3) is the ideal entropy of the particles
(c = n/V ) and

Z0 =
∫
Dφ exp

{
−1

2

∫
drdr′φ(r)v−1(r− r′)φ(r′)

}
. (5)

We defined Zex as the “excess partition function”, the part
of Z that accounts only for the interactions between the
particles. The propagator v−1 in (5) is the inverse of the
bare Coulomb operator and v−1

DH in (4) is given by

v−1
DH(r) = −∇

2δ(r)
4π`B

+ q2cδ(r). (6)

It is easy to show that this propagator is the inverse of
the Debye-Hückel operator vDH(r) = `Beκr/r, where κ−1

is the screening length given by κ2 = 4π`Bq2c. The W [φ]
is an infinite series in φ that contains only non-Gaussian
terms. Up to eighth order it reads

W [φ] =
iI3V

3!
φ3 +

I4V

4!

(
φ4 − 3φ2

2
)

− iI5V

5!

(
φ5 − 10φ2φ3

)
− I6V

6!

(
φ6 − 15φ4φ2 − 10φ3

2
+ 30φ2

3
)

+
iI7V

7!

(
φ7 − 21φ2φ5 − 70φ3φ4 + 210φ2

2
φ3

)
+
I8V

8!

(
φ8 − 28φ6φ2 − 56φ5φ3 − 35φ4

2

+ 420φ4φ2
2

+ 560φ2φ3
2 − 630φ2

4
)

(7)

with Im ≡ qmc and i2 = −1; to simplify the notation, we
use φn =

∫
drφn/V .

If we define

ZDH =
∫
Dφ exp

{
−1

2

∫
drdr′φ(r)v−1

DH(r− r′)φ(r′)
}
,

(8)

then the excess free energy of the OCP is given by

F ex

kBT
= − logZex = −Eself − log

(
ZDH

Z0

)
− log

〈
eW [φ]

〉
.

(9)

The angular brackets correspond to a Gaussian average
where the the inverse Debye-Hückel operator (6) is used
as propagator. The term

F ex
DH

kBT
≡ −Eself − log

(
ZDH

Z0

)

= − V

2π2

∞∫
0

dk k2

[
κ2

2k2
− 1

2
log
(

1 +
κ2

k2

)]
(10)

is the Debye-Hückel contribution to the free energy. Notice
that Eself automatically regularizes this integral in the
ultra-violet, allowing its evaluation without the need of a
small wave-length (large-k) cut-off.

Using (10) and neglecting the term log
〈
eW [φ]

〉
in (9),

we get the excess free energy per particle

f ex ≡ F ex

nkBT
= − 1√

3
Γ 3/2 (11)

where Γ ≡ q2`B
(
4πc/3

)1/3 is the (dimensionless) plasma
parameter. From the excess free energy, we can get the
internal energy per particle

u ≡ U

nkBT
= Γ

∂f ex

∂Γ
= −
√

3
2
Γ 3/2. (12)

This is the resulting u for what we call from now on the
“Gaussian theory without cut-off”.

Equation (11) is the well known Debye-Hückel limit-
ing law, which is asymptotically exact for vanishing Γ .
At Γ ∼ O(1) the expression (12) already yields poor re-
sults when compared to simulations (cf. Fig. 1b). At large
Γ (cf. Fig. 1a) this inadequacy is particularly clear: fits
to simulation data show a linear behavior [11,14] in the
internal energy, and not a 3/2 power law.

Brilliantov [12] calculated the Gaussian theory as de-
picted above but introduced a modification, namely a
large-k cut-off. This is justified with ideas that follow
the Debye theory for the specific heat in solids, stating
a direct relation between the number of allowed k modes
in the system and the number of degrees of freedom 3n.
The allowed wave vectors would be approximately inside
a spheres of radius ko =

(
9cπ2

)1/3, which is used to sub-
stitute the ∞ in the integral in (10). The agreement be-
tween the internal energy obtained with this cut-off and
the results from Monte Carlo simulations [10,11] are good
(cf. Figs. 1 and 2). What we will show next is that the
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inclusion of contributions up to eighth order in φ coming
from the term log〈eW [φ]〉 does not change significantly this
result.

When the cut-off ko is used in (10), we get the Debye-
Hückel excess free energy per particle

f ex
DH = −3

2
(
bΓ
)3/2 arctan

(
1√
bΓ

)
− 3

4

(
bΓ − log

(
1 + bΓ

))
(13)

where Γ is the plasma parameter and b ≡
(
2/π2

)1/32/3
(keeping the notation used in [12]). Notice that in the limit
Γ → 0 this expression reduces to (11), as it should. This is
the excess free energy used in [12] to calculate the internal
energy.

In order to go beyond the Debye-Hückel level, we do
the cumulant expansion

log〈eW [φ]〉 = 〈W [φ]〉 +
1
2

(
〈W 2[φ]〉 − 〈W [φ]〉2

)
+ · · ·

(14)

Using (7) and going up to eighth order in φ, we obtain

− log〈eW [φ]〉
n

=
π

108

[
χ3 +

3
2
〈φ2〉2χ1

]
+

π

144
〈φ2〉3χ1 −

π

432
χ4 (15)

where

〈φ2〉 =
`B
2π2

ko∫
0

dk
k2

k2 + κ2

=
9bΓ

2

[
1−
√
bΓ arctan

(
1√
bΓ

)]
(16)

and

χm ≡ 4π

∞∫
a

dr〈φ(0)φ(r)〉m

=
4
π2

(
9π
4

)m
mm−3

(
bΓ
)3(m−1)/2

Γ
(
3−m,mπ

√
bΓ
)
.

(17)

Γ (m,x) is the incomplete gamma function [15] and a =
π/
(
9cπ2

)1/3 is a small distance cut-off. Ideally, the inte-
grals χm should be performed in k-space with the mo-
mentum cut-off given by ko. However, for m ≥ 3, the
Fourier transformed integrals cannot be solved in a closed
form; on the other hand, the integrals, when written in
real space are not difficult to calculate exactly, provided a
small distance cut-off. Since a large-k cut-off corresponds
in real space roughly to a small distance cut-off, we intro-
duced as an approximation the small-r limit a such that
ko = π/a.
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Fig. 1. Internal energy (u) as function of the plasma parameter
Γ in the range (a) 1 < Γ < 300 and (b) 0 < Γ ≤ 1. The
full line denotes the result obtained here, the dashed line the
Gaussian theory with cut-off [12], the dash-dotted line the u
obtained from the Debye-Hückel limiting law (Eq. (12)). The
points denote simulation results from references [10] (0 < Γ <
1) and [11] (1 < Γ < 300).

Putting (13, 15) into (9), we finally obtain the expres-
sion for the excess free energy of the OCP with contribu-
tions up to eighth order in φ. The internal energy follows
as in (12).

3 Results and discussion

In Figures 1a and 1b we show u obtained from simulations
[10,11] (black circles), from the Gaussian theory with [12]
and without (Eq. (12)) cut-off (respectively dashed line
and dash-dotted line) and from the results obtained here
with the higher order terms (full line).

In the strongly coupled regime (Γ > 1, Fig. 1a), the
inclusion of higher order terms does not affect the results
obtained with the Gaussian theory with cut-off; both re-
sults are indistinguishable on this scale. We also calculate
the relative error in u, defined as

Rerr =
u− us

|us|
, (18)

where the subscript s stands for simulation. In Figure 2a
we show, for Γ > 1, Rerr for the Gaussian theory with cut-
off (black circles) and for u with the higher order terms
calculated here (white circles). The agreement between
theory and simulation is good, with deviations between
−2% and 2% [16]. Notice however that for Γ . 10 the in-
clusion of the higher order terms make the results worse,
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Fig. 2. The relative error Rerr (Eq. (18)) as function of Γ
for (a) 1 < Γ < 300 and (b) 0.3 < Γ ≤ 1. The white circles
represent the relative error for the u obtained here with the
higher order corrections; the black circles represent the relative
error for the Gaussian theory with cut-off [12].
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Fig. 3. Comparison of the sixth order and eighth order cor-
rections with uDH. Notice that ∆u6 is roughly one order of
magnitude smaller than uDH and ∆u8 is two orders smaller
than uDH.

relative to the Gaussian theory with cut-off, when com-
pared to simulation.

In the weakly coupled regime (Γ ≤ 1, Fig. 1b), this
trend is confirmed. In Figure 2b it is clear that the devia-
tion between theory and simulations are larger when the
higher orders are included. However, in both cases Rerr in-
creases with decreasing Γ . This is not surprising though,
since u goes to zero as Γ decreases, making the relative er-
ror very sensitive to small differences between theory and
simulation.

In Figure 3 we assess the importance of the higher
order corrections computed here in comparison to the
Gaussian theory with cut-off. The higher order terms of

the excess free energy are given by (15): the first term in
the rhs corresponds to the sixth order in φ correction and
two remaining ones to the eighth order. We can then write
down u as a sum of three terms, viz.

u = uDH +∆u6 +∆u8 (19)

where uDH is the Gaussian contribution to the internal
energy coming from (13). In Figure 3 we plot ∆u6/|uDH|
and ∆u8/|uDH|. As we can see, ∆u6 is approximately one
order of magnitude smaller than uDH and ∆u8 two order
of magnitude smaller than uDH. We expect that the inclu-
sion of terms of order higher than eight will not change
significantly the picture given here.

In summary, we have calculated higher order contribu-
tions to the internal energy of the OCP. We have shown
that (i) the effects of these higher order terms are small
relative to the previously calculated Gaussian theory [12]
and (ii) they do not improve the agreement between the-
ory and simulation This shows that the Gaussian theory
with the cut-off ko introduced such as to approximately
include strong nearest-neighbor correlations in the high-Γ
limit is very accurate for describing the OCP [17].

Our calculation consists of two major steps, viz., the
expansion of the excess free energy (9) in cumulants of φ
and the introduction of the cut-off ko suggested in refer-
ence [12]. In principle, the first step can be improved sys-
tematically by including higher order terms, while there is
no clear recipe for improving the second one. The results
we obtained here are then a consequence of the approxi-
mate way of calculating the cut-off. Since the precise value
of ko is not uniquely determined, it may be treated as a
fit parameter. By fitting the theory to simulation at the
high-Γ limit we obtain kfit ' 4.417c1/3, which is close to
the value ko =

(
9π2c

)1/3 ' 4.462c1/3 used by Brilliantov
and also used by us.
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